-
最佳答案:比如一个函数中间像折了一下,f(x)=|x|在x=0就是这样的情况
-
最佳答案:郭敦顒回答:一个不分段的连续的函数在其定义域R内可导,如y=x4它的导函数4x3在定义域内也是连续函数.问题是是否存在一个不分段的连续的函数在其定义域R内可导,
-
最佳答案:可导可微关系不可导=不可微可导=可微可导连续关系不连续一定不可导,连续也不一定可导.但可导必然连续.在某点的导数就是该点切线的斜率; 对多维情况,若有多个偏导数
-
最佳答案:y=根号下x-1x大于等于1但是导涵数的x不能等于1
-
最佳答案:1、A,比如y=根号(x²)=|x|,在x=0处不可导2、A ,f(x)可能不可导3、A ,比如g(x)=x²,x(x)=|t|,g(t)可导,但不能用那个求导
-
最佳答案:楼上几位说的都存在不同程度的问题.楼上说的在概念上有问题,例子也给举错了,y = |x| 在 (-1,0]上定义时,在x = 0处的左导数是存在的,就等于-1,
-
最佳答案:只用考虑定义域内的就行,单侧极限连续可导;"不符合这样的定义 就说这端点不可导 、极限 、连续?"--如果是可导,就应该讲清是否是单侧的,或者很明白的只有单侧定
-
最佳答案:偏导数存在且连续可以推出函数可微,函数可微可以推出极限存在和偏导数存在.可导则连续,连续但不一定可导(比如一条折线),函数上连续则存在极限(反推便知,若不存在极
-
最佳答案:连续型随机变量的分布函数是通过其密度函数积分得到的,因而是连续的(积分上限函数必连续).但不是处处可导的,如密度函数f(x) = 0,-inf.
-
最佳答案:告诉你,分段函数在分段点处有两种情况1,在分段点处函数是连续的 2,在分段点处函数是间断的.而对于" 在分段点处函数是连续的" 又有两种情况(1,函数在连续点处