-
最佳答案:曲线C的极坐标方程为ρsin(θ-π6 )=3,即 ρsinθcosπ6 -ρcosθsinπ6 =3 ,它的直角坐标方程为:3 y-x-6=0 ,点A(2,π
-
最佳答案:解题思路:(Ⅰ)由ρ=4sinθ得ρ2=4ρsinθ,根据极坐标与直角坐标的互化公式求得曲线C1的直角坐标方程,同理求得得曲线C2的直角坐标方程.(Ⅱ)把两曲线
-
最佳答案:将原极坐标方程ρ=4cosθ,化为:ρ 2=4ρcosθ,化成直角坐标方程为:x 2+y 2-4x=0,它关于直线y=x(即θ=π4 )对称的圆的方程是x 2+
-
最佳答案:ρcosθ=3,ρ=4cosθ;两式相除:cosθ=3/4cosθ(cosθ)^2=3/4cosθ=根3/2,0小于等于θ小于二分之π,θ=π/6ρ=4cosθ
-
最佳答案:解题思路:考查极坐标形式的曲线,其切线和法线的求法.一般,先将极坐标方程转化成直角坐标的参数方程或者直角坐标方程,再根据直角坐标系下切线和法线方程的求法即可.∵
-
最佳答案:[-1,3]将两曲线方程化为直角坐标坐标方程,得C 1:,C 2:.因为两曲线有公共点,所以,即-1≤ m ≤3,故 m ∈[-1,3].
-
最佳答案:A.B.C.(1)曲线C表示的为圆心在(2,1),半径为3的圆,那么圆上点到直线距离的最大值为圆心到直线的距离加上圆的半径得到为(2)存在实数满足不等式0 ,,
-
最佳答案:曲线ρ(cosθ+sinθ)+2=0,即 x+y+2=0,ρ(sinθ-cosθ)+2=0,即 y-x+2=0,联立方程组,解得 x=0,y=-2,故两曲线的
-
最佳答案:直线l的极坐标方程为 θ=3π/4直角坐标方程是y=-x曲线c的参数方程为x=√2+2cosθ,y=2sinθ直角坐标方程是(x-√2)²+y²=4是圆圆心(√
-
最佳答案:解题思路:(1)由,得曲线的直角坐标方程为(2)将直线的参数方程代入,得设A.B两点对应的参数分别为则当时,|AB|的最小值为2.(1)(2)2