-
最佳答案:可微推出偏导数存在且函数连续,反之不成立.偏导函数连续推出可微,反之不成立.可导一定连续,但连续不一定可导.可导与可微是等价的.注意:要区分偏导函数与函数.(把
-
最佳答案:对一元函数来说,可导与可微是一回事,连续要比它低一级,即可导必连续,反之,连续不一定可导.多元函数可微必可导,反之不真.这里的可导是指偏导数存在,是固定其他变量
-
最佳答案:1、一元函数涉及的是两维曲线,多元函数涉及到的是至少是三维的曲面.一元函数的可导可微只要从左右两侧考虑;多元函数的可导可微,必须从各个角度,各个方向,各个侧面,
-
最佳答案:微分,顾名思意就是无限细分,即随着自变量无限细分,应变量也无限细分.函数可导跟某一点可导是不一样的.可微一般只针对函数.对于函数有,可微=可导=连续+导数处处存
-
最佳答案:注意,可导指的是偏导数存在,而可微则需要更高的要求,要求是不管怎么样趋近去(0,0)都要有极限存在但是偏导数只是在固定x或者固定y的情况去,让x或y无限的靠近,
-
最佳答案:在这里写不清楚,基本思路应该是:假设f关于x可导,关于y导数连续.那么在(x0,y0)首先可以写df1=df/fx|(x0,y0)*dx,然后df2=df/dy