-
最佳答案:先分解;y=1/[(1-x)(1+x)]=0.5/(1-x)+0.5/(1+x)y'=0.5/(1-x)^2-0.5/(1+x)^2y"=0.5*2!/(1-x
-
最佳答案:举个一阶可导二阶不可导的例子:分段函数:f(x)=0 当x=0在x=0处,f(x)的一阶导数等于0,二阶导数不存在(左导数等于0,右导数等于2)
-
最佳答案:f(x)=x^2sin(1/x) x=0时 f(x)=0函数连续一阶导数存在(x=0点用定义证明),但导数在x=0处不连续
-
最佳答案:你的叙述是有问题的:1)函数在间断点处是没有导数的;2)在可去间断点补充定义使之连续后就已经不是可去间断点了.所以,这里这个问题应该是 “分段函数怎么求二阶导数
-
最佳答案:二元函数的极值求法是有专门的方法的如果在该点可导,同时有fx'(x0,y0)=0,fy'(x0,y0)=0那么(x0,y0)为函数f(x,y)的极值点.如果不可
-
最佳答案:你的问题本身就有错误,一个函数的拐点可能是二阶导数为0的点,也有可能是二阶不可导点.至于为什么拐点处二阶导数为0,是这样的,一阶导数描述函数的变化,二阶导数描述
-
最佳答案:不是,反例是:f(x)=e^(-1/x^2),x不为0.0,x=0.此时f(x)在x=0的各阶导数都是0.但它不能展成x=0处的Taylor级数.否则的话f(x
-
最佳答案:这种题要分清求导对象是谁dx/dy=1/y'这个式子是反函数的求导公式,两边同时对y求导左边=d²x/dy²而如果右边你只写:-y''/(y')²,这时右边是在
-
最佳答案:不是,必须在该点具有(n+1)阶导数,最后一项用来误差估计在x=0处Taylor展开式为f(x)=f(0)+f'(0)x+f''(0)x^2/2!+……+f(n
-
最佳答案:就用递增递减关系来判断啊(这个是万能的)比如说:f(x)=x^3一阶导:f'(x)=3x^2=0,可能极值点为x=0当x0由此可知x在负无穷到正无穷的区间上单调