-
最佳答案:给你讲解一下函数可导性与连续性的关系:设函数y=f(x)在x处可导,即lim(Δx→0)Δy/Δx=f '(x)存在.由具有极限的函数与无穷小的关系知道Δy/Δ
-
最佳答案:第一个x→0时 lim |sinx|=0=|sin0| 所以在0点连续x→0+时 lim |sinx|/x=lim sinx/x=1x→0-时 lim -sin
-
最佳答案:讨论下列函数在x=0处的连续性与可导性:1.y=∣sinx∣第一在 x=0处有定义,第二当x趋近于0时lim|sinx|=0,第三函数值等于极限值.所以连续但不
-
最佳答案:连续但不可导,一般这个例子就是在讲微分的时候,说明某些连续函数是不可微的.
-
最佳答案:lim(x-->0)x^2sin(1/x)=lim(x-->0)x*sin(1/x)/(1/x)=0即lim(x->0)=f(0)所以f(x)在x=0处连续.l
-
最佳答案:因为xsin1/x->0 (x->0) 所以f在x=0处连续,而(xsin1/x-0)/x=sin1/x 当x->0是 极限不存在,所以f在x=0处不可导.
-
最佳答案:x属于R的任意点的时候,x的某邻域一定是无理数,那么在这一邻域f(x)=x^0=1所以fx在除去1有理数上的值为f(x)=x不等于1,即fx在除去1的所有有理数
-
最佳答案:F(x)在x=0处可导,那么lim(x→0)(F(x)-F(0))/(x-0)=lim(x→0)F(x)/x=F'(0)那么定义G(x)= F(x)/x x不等
-
最佳答案:利用定义来求f '(0) = lim(x->0) [ f(x) - f(0) ] / (x-0)= lim(x->0) x² sin(1/x) / x= lim
-
最佳答案:x趋于0时 limf(x)=0 ,f(0)=0 所以f(x)在x=0处连续f(x)在x=0处连续,则当a趋向于0时,[f(x+a)-f(x)]/a极限为0/0型