-
最佳答案:不如给我算了.
-
最佳答案:y + xe^y = 1 两端直接求微分:dy + e^y * dx + x * e^y dy = 0=> dy = - e^y dx / ( 1+ x * e
-
最佳答案:由已知得:e^(x+y)=xy.d e^(x+y)=dxy.e^(x+y)*d(x+y)=(ydx+xdy).e^(x+y)*(dx+dy)=ydx+xdy.e
-
最佳答案:对隐函数两边求导2x+2yy'=0y'=-y/x即dy/dx=-y/x
-
最佳答案:两边对x求导:y'=(1+y')[sec(x+y)]^2得y'=[sec(x+y)]^2/{1-[sec(x+y)]^2}=1/{[cos(x+y)]^2-1}
-
最佳答案:对e^(x+y)+cos(xy)=0两边求微分,得d(e^(x+y)+cos(xy))=0de^(x+y)+dcos(xy)=0e^(x+y)*(dx+dy)-
-
最佳答案:晕.你都不知道打x^2+y^2+c啊.我还以为是x2呢,我就说明明隐函数表示的是个线性方程,原来是你表述有问题.dΦ=2xdx+2yy'dx+dc=0=>x+y
-
最佳答案:1.两边分别求导得:y'=1+y'/y(1-1/y)y'=1y'=y/(y-1)2.dy/dx=y'=(1/sin(x^2+1))×cos(x^2+1)×2x=
-
最佳答案:左边:dx+dy=d(x+y),表示对x和y的微分之和等于对x,y和的微分同理有:dxy=xdy+ydx,表示分步求导右边:就是指数函数的求导定理应用啊.d(e