-
最佳答案:解题思路:函数y=ax2-x-1仅有一个零点,分函数是一次函数还是二次函数讨论,即a=0和a≠0讨论,特别a≠0时,转化为二次函数图象与x轴只有一个交点,△=0
-
最佳答案:解题思路:函数y=ax2-x-1仅有一个零点,分函数是一次函数还是二次函数讨论,即a=0和a≠0讨论,特别a≠0时,转化为二次函数图象与x轴只有一个交点,△=0
-
最佳答案:解题思路:函数y=ax2-x-1仅有一个零点,分函数是一次函数还是二次函数讨论,即a=0和a≠0讨论,特别a≠0时,转化为二次函数图象与x轴只有一个交点,△=0
-
最佳答案:∵ f(x)=4^x+m×2^x+1=(2^x)^2+m×2^x+1若f(x)有且只有一个零点即方程(2^x)^2+m×2^x+1=0有且只有一个实根令t=2^
-
最佳答案:1.(1-5a)>0,(1+a)0 1+a-1 a1/5或a
-
最佳答案:解题思路:方程(2x)2+m•2x+1=0仅有一个实根,设2x=t(t>0),则t2+mt+1=0有且只有一个正实数根,考虑应用判别式,分判别式大于0和等于0两
-
最佳答案:解题思路:方程(2x)2+m•2x+1=0仅有一个实根,设2x=t(t>0),则t2+mt+1=0有且只有一个正实数根,考虑应用判别式,分判别式大于0和等于0两
-
最佳答案:解题思路:方程(2x)2+m•2x+1=0仅有一个实根,设2x=t(t>0),则t2+mt+1=0有且只有一个正实数根,考虑应用判别式,分判别式大于0和等于0两
-
最佳答案:F(x)=(2^x)^2+M2^x+1令y=2^xF(y)=y^2+My+1∵y=2^x在R上单调递增,y>0只需F(y)在(0,+∞)上仅有一个零点又∵F(0
-
最佳答案:要使一个三次函数只有一个零点,就要使其极大值为负数,或极小值为正数.f '(x) = 3x^2-6x-9 ,令 f '(x) = 0 得 x1 = -1,x2