-
最佳答案:同济第六版《高等数学》上册p343-344.有很清晰的推导过程.简单说就是把f(x)变成负数的形式后,是e的指数形式,然后设特解是e的指数形式,最后还原到实数域
-
最佳答案:这种题分为两种类型:1.不带有三角函数的.2.带有三角函数的.
-
最佳答案:λ=2,2不是特征方程的根
-
最佳答案:通常情况下,求二阶常系数非齐次线性微分方程的特解有3种方法:①待定系数法 ②拉普拉斯变换 ③微分算子法虽然它们的解法过程形式迥异,但最后的特解形式一般情况下却是
-
最佳答案:把你假设出的特解带入原方程,同类项对比系数,就能得到解待定系数的一次方程组,这样就能解得待定系数了.举个例子看看:y''+2y'+3y=4x+1这个方程的特解应
-
最佳答案:显然对应的特征方程的解为 正负i所以对应的方程是 y''+y=0
-
最佳答案:好急啊~~能不能有详细过程? 设y'=t 用一阶求导可得出y'=C1e^x y'=m*e^x
-
最佳答案:解其对应的齐次常系数线性微分方程时,其解必定含有一个任意常数C,把常数C看作是个变量,并假定就是非齐次常系数线性微分方程的一个特解.将其代入非齐次常系数线性微分
-
最佳答案:可设特解Y=Ax*e^x+Bx代入原微分方程可得:A=1,B=-4所以特解Y=Ax*e^x+Bx
-
最佳答案:右边看 成 Ce^0,用代系数法,或者算子法都行了.