∵∠CAD = 90°,E是AD的中点
∴EC = ED = EA
∴∠ECB = ∠GDC
∵AC//GF
∴EG:EA = FE:EC
∴EG:EF = EC;EA
∵∠CEG = ∠AEF
∴△GEC∽△FEA
∴∠GCE = ∠FAE
∵∠CFB = ∠FAE +∠EAC+∠ACE
∠CGD=∠EAC+∠ACE+∠ECG
∴∠CFB = ∠CGD
∴△CFB∽△DGC
∴CB:CD = BF:GC
∵D是CB的中点
∴CB:CD = 2:1
∴BF:CG = 2:1
∴2CG = BF
∵∠CAD = 90°,E是AD的中点
∴EC = ED = EA
∴∠ECB = ∠GDC
∵AC//GF
∴EG:EA = FE:EC
∴EG:EF = EC;EA
∵∠CEG = ∠AEF
∴△GEC∽△FEA
∴∠GCE = ∠FAE
∵∠CFB = ∠FAE +∠EAC+∠ACE
∠CGD=∠EAC+∠ACE+∠ECG
∴∠CFB = ∠CGD
∴△CFB∽△DGC
∴CB:CD = BF:GC
∵D是CB的中点
∴CB:CD = 2:1
∴BF:CG = 2:1
∴2CG = BF