I = ∫e^(-x)cosxdx = ∫e^(-x)dsinx
= e^(-x)sinx - ∫-e^(-x)sinxdx
= e^(-x)sinx - ∫e^(-x)dcosx
= e^(-x)sinx - e^(-x)cosx -∫e^(-x)cosxdx
= e^(-x)(sinx-cosx) - I
2I = e^(-x)(sinx-cosx)
I = (1/2)e^(-x)(sinx-cosx)+C
I = ∫e^(-x)cosxdx = ∫e^(-x)dsinx
= e^(-x)sinx - ∫-e^(-x)sinxdx
= e^(-x)sinx - ∫e^(-x)dcosx
= e^(-x)sinx - e^(-x)cosx -∫e^(-x)cosxdx
= e^(-x)(sinx-cosx) - I
2I = e^(-x)(sinx-cosx)
I = (1/2)e^(-x)(sinx-cosx)+C