三角恒等变换1函数y=sin ^4+cos ^2的最小正周期是2已知在三角形ABC中,3sinA+4cosB=6,4si

1个回答

  • 1、先化简函数,再根据公式即可求出周期:

    y

    =(sin²x)²+cos²x

    =[(1-cos2x)/2]²+(1+cos2x)/2

    =(3+cos²2x)/4

    =[3+(1+cos4x)/2]/4

    =(1/8)*(7+cos4x)

    ∴周期T=2π/4=π/2,

    2、两式平方后相加即可:

    (3sinA+4cosB)²+(4sinB+3cosA)²

    =(9sin²A+9cos²A)+(16cos²B+16sin²B)+(24sinAcosB+24sinBcosA)

    =9+16+24sin(A+B)

    =25+24sin[π-(A+B)]

    =25+24sinC

    =6²+1²

    =37

    ∴sinC=1/2

    ∴∠C=π/6或5π/6

    3、(sin65°+sin15°sin10°)/(sin25°-cos15°cos80°)

    =(cos25°+sin15°cos10°)/[sin(15°+10°)-cos15°sin10°]

    =[cos(15°+10°)+sin15°cos10°]/[(sin15°cos10°+sin10°cos15°)-cos15°sin10°]

    =[(cos15°cos10°-sin15°sin10°)+sin15°sin10°]/(sin15°cos10°)

    =(cos15°cos10°)/(sin15°cos10°)

    =cot15°

    4、乘以cos6°再计算:

    sin6°sin42°sin66°sin78°

    =cos6°sin6°sin42°sin66°sin78°/cos6°

    =(1/2)sin12°cos12°cos24°cos48°/cos6°

    =(1/4)sin24°cos24°cos48°/cos6°

    =(1/8)sin48°cos48°/cos6°

    =(1/16)sin96°/cos6°

    =(1/16)sin84°/sin84°

    =1/16

    5、sin²20°+cos²50°+sin20°cos50°

    =(1-cos40°)/2+(1+cos100°)/2+(1/2)*(sin70°-sin30°)

    =(1-cos40°)/2+(1-cos80°)/2+(1/2)*(cos20°-1/2)

    =1-(1/2)*(cos40°+cos80°)+(1/2)*(cos20°-1/2)

    =1-(cos60°cos20°)+(1/2)cos20°-1/4

    =1-(1/2)cos20°+(1/2)cos20°-1/4

    =3/4

    6、作和后,真数部分乘以sin(π/9)再算:

    log2 cosπ/9+ log2 cos2π/9+ log2 cos4π/9

    =log2 [(cosπ/9)*(cos2π/9)*(cos4π/9)]

    =log2 [(sinπ/9)*(cosπ/9)*(cos2π/9)*(cos4π/9)/(sinπ/9)]

    =log2 [(1/8)*sin(8π/9)/(sinπ/9)]

    =log2 (1/8)

    =-3

    7、(1+tanA)(1+tanB)

    =1+tanA+tanB+tanAtanB

    =1+tan(A+B)(1-tanAtanB)+tanAtanB

    =2