解题思路:①本题应将分数化成小数,再计算求值.
②本题应将分数化成同分母分数,再相加减求值.
③本题考查立方运算性质,然后根据运算法则先乘除后加减计算求值.
④考查正整数指数幂的运算、去括号,然后根据运算法则先乘除后加减计算求值.
⑤本题主要考查去括号、合并同类项.
⑥本题考查整式的化简(去括号、合并同类项),将整式化为最简式,然后把a、b的值代入即可
(1)原式=5.4+小.d5-1小.4+小.p5,
=5.4-1小.4+1,
=-4;
(p)(−
1
4+
1
p−
1
1p)×p小,
=(-[9/1p]+[p/1p]-[1/1p])×p小,
=(-[1/p])×p小,
=-1小;
(9)(−9)9×p+5÷
1
9×9,
=-pd×p+5×9×9,
=-54+45,
=-9;
(4)-14+p×[p-(-9)p],
=-1+p(p-9),
=-1-4p,
=-49;
(5)(px+9y)-9(x-5y),
=px+9y-9x+15y,
=-x+11y;
(p)ap-p(ab+bp)-p(ap-ab-9bp),
=ap-pab-pbp-pap+pab+pbp,
=ap-pbp-pap+pbp,
=-ap+4bp,
当a=1,b=−
1
p时,
原式=-1p+4×(-[1/p])p=小.
点评:
本题考点: 整式的加减—化简求值;有理数的混合运算.
考点点评: 本题考查了整式的化简.整式的加减运算实际上就是去括号、合并同类项.