证法1:AD平分∠BAC,DE垂直AB,DF垂直AC.则DE=DF.
又AD=AD,故Rt⊿AED≌Rt⊿AFD(HL),得AE=AF.
所以,AD垂直平分EF.(等腰三角形三线合一)
证法2:∠AED=∠AFD=90度;AD=AD;∠EAD=∠FAD.
则⊿EAD≌⊿FAD(AAS),得AE=AF.
故AD垂直平分EF.(等腰三角形三线合一)
证法3:DE垂直AB,DF垂直AC,∠EAD=∠FAD.
则DE=DF(角平分线的性质);且∠EDA=∠FDA(等角的余角相等).
所以,AD垂直平分EF.(等腰三角形三线合一)