令x=2sint,y=cost,则(y^2+1/y^2)(x^2/4+4/x^2)=[(cost)^2+1/(cost)^2][(sint)^2+1/(sint)^2]=(sin2t)^2/4+8/(sin2t)^2-2>=2sqt[(sin2t)^2/4+8/(sin2t)^2]-2=2sqt(2)-2
注:sqt指平方根
令x=2sint,y=cost,则(y^2+1/y^2)(x^2/4+4/x^2)=[(cost)^2+1/(cost)^2][(sint)^2+1/(sint)^2]=(sin2t)^2/4+8/(sin2t)^2-2>=2sqt[(sin2t)^2/4+8/(sin2t)^2]-2=2sqt(2)-2
注:sqt指平方根