解题思路:(1)要证两个三角形全等,已知的条件有AC=BC,CE=CD,我们发现∠BCD和∠ACE都是60°减去一个∠ACD,因此两三角形全等的条件就都凑齐了(SAS);
(2)要证AE∥BC,关键是证∠EAC=∠ACB,由于∠ACB=∠ACB,那么关键是证∠EAC=∠ACB,根据(1)的全等三角形,我们不难得出这两个角相等,也就得出了证平行的条件.
(3)同(1)(2)的思路完全相同,也是通过先证明三角形BCD和ACE全等,得出∠EAC=∠B=60°,又由∠ABC=∠ACB=60°,得出这两条线段之间的内错角相等,从而得出平行的结论.
(1)△DBC和△EAC会全等
证明:∵∠ACB=60°,∠DCE=60°
∴∠BCD=60°-∠ACD,∠ACE=60°-∠ACD
∴∠BCD=∠ACE
在△DBC和△EAC中,
∵
BC=AC
∠BCD=∠ACE
EC=DC,
∴△DBC≌△EAC(SAS),
(2)∵△DBC≌△EAC
∴∠EAC=∠B=60°
又∠ACB=60°
∴∠EAC=∠ACB
∴AE∥BC
(3)结论:AE∥BC
理由:∵△ABC、△EDC为等边三角形
∴BC=AC,DC=CE,∠BCA=∠DCE=60°
∠BCA+∠ACD=∠DCE+∠ACD,即∠BCD=∠ACE
在△DBC和△EAC中,
∵
BC=AC
∠BCD=∠ACE
CD=EC,
∴△DBC≌△EAC(SAS),
∴∠EAC=∠B=60°
又∵∠ACB=60°
∴∠EAC=∠ACB
∴AE∥BC.
点评:
本题考点: 等边三角形的性质;全等三角形的判定与性质.
考点点评: 本题考查了全等三角形的判定与性质及等边三角形的性质;本题中(1)(2)问实际是告诉解(3)题的步骤,通过全等三角形来得出角相等是解题的关键.