an=n(n+1)=n²+n,
∴Sn=(1²+2²+3²+…+n²)+(1+2+3+…+n)
=n(n+1)(2n+1)/6+n(n+1)/2
=n(n+1)(n+2)/3.
∴1×1+2×3+3×4+…+98×99
=98×99×100÷3
=485100.
an=n(n+1)=n²+n,
∴Sn=(1²+2²+3²+…+n²)+(1+2+3+…+n)
=n(n+1)(2n+1)/6+n(n+1)/2
=n(n+1)(n+2)/3.
∴1×1+2×3+3×4+…+98×99
=98×99×100÷3
=485100.