如图,在平面直角坐标系中,四边形OABC是矩形,OA=4,AB=2,直线y=-x+3/2与坐标轴交于D、E.设M是AB的

1个回答

  • (1)∵AB=2,M是AB中点,

    ∴AM=1,∴M(4,1)

    当y=-x+3/2=0时,x=3/2,

    ∴D(3/2,0)

    (2)设P(x,y),PH交圆F于G,则PH=2-y,PM²=GP²+GM²=(1-y)²+(4-x)²

    连结FN,

    则FN=FM=FP=PM/2,FN⊥BH,

    又∵PH⊥BC,AB⊥BC,

    ∴AB∥NF∥PH,

    ∴BN=HN,

    ∴NF=(BM+PH)/2

    ∴BM+PH=PM

    ∴(BM+PH)²=PM²

    即(3-y)²=(1-y)²+(4-x)²

    把x=-y+3/2代入,解得y1=根号22-4.5,y2=-根号22-4.5(舍去)

    ∴x=6-根号22,

    ∴S梯形=(BM+HP)*MG/2=(7.5-根号22)(根号22-2)/2≈3.78