∫(cscx)dx=∫(1/sinx)dx
=∫(sinx/sin²x)dx
=∫d(-cosx)/(1-cos²x),令u=cosx,只是用u代替cosx而不是换元积分法
=-∫du/(1-u²)
=-(1/2)∫[1/(1-u)+1/(1+u)]du
=-(1/2)∫du/(1-u)-(1/2)∫du/(1+u)
=(1/2)[∫d(1-u)/(1-u)-∫d(1+u)/(1+u)]
=(1/2)[ln|1-u|-ln|1+u|]+C
=(1/2)ln|(1-cosx)/(1+cosx)|+C
=ln|√[(1-cosx)/(1+cosx)]|+C
=ln|√[(1-cosx)/(1+cosx)*(1-cosx)/(1-cosx)]|+C
=ln|√[(1-cosx)²/(1-cos²x)]|+C
=ln|(1-cosx)/sinx|+C
=ln|cscx-cotx|+C
这个方法容易推导,但是比你那个简单吗?