求一个简单的不定积分,∫dx/sinx

1个回答

  • ∫(cscx)dx=∫(1/sinx)dx

    =∫(sinx/sin²x)dx

    =∫d(-cosx)/(1-cos²x),令u=cosx,只是用u代替cosx而不是换元积分法

    =-∫du/(1-u²)

    =-(1/2)∫[1/(1-u)+1/(1+u)]du

    =-(1/2)∫du/(1-u)-(1/2)∫du/(1+u)

    =(1/2)[∫d(1-u)/(1-u)-∫d(1+u)/(1+u)]

    =(1/2)[ln|1-u|-ln|1+u|]+C

    =(1/2)ln|(1-cosx)/(1+cosx)|+C

    =ln|√[(1-cosx)/(1+cosx)]|+C

    =ln|√[(1-cosx)/(1+cosx)*(1-cosx)/(1-cosx)]|+C

    =ln|√[(1-cosx)²/(1-cos²x)]|+C

    =ln|(1-cosx)/sinx|+C

    =ln|cscx-cotx|+C

    这个方法容易推导,但是比你那个简单吗?