x不为0时,f(x) = |x|^(1/2)sin(1/x^2),
lim_{x->0}f(x) = lim_{x->0}|x|^(1/2)sin(1/x^2) = 0 [sin(1/x^2)有界,|x|^(1/2)是无穷小量。。]
= f(0),
f(x)在x=0处连续。
lim_{x->0+}[f(x) - f(0)]/x = lim_{x->0+}...
x不为0时,f(x) = |x|^(1/2)sin(1/x^2),
lim_{x->0}f(x) = lim_{x->0}|x|^(1/2)sin(1/x^2) = 0 [sin(1/x^2)有界,|x|^(1/2)是无穷小量。。]
= f(0),
f(x)在x=0处连续。
lim_{x->0+}[f(x) - f(0)]/x = lim_{x->0+}...