=∫(x+1-1)/根号(1+x)dx
=∫根号(x+1)dx-∫1/根号(1+x)dx
=2/3(x+1)^(3/2)-2(1+x)^(1/2)
=2/3(3+1)^(3/2)-2/3(8+1)^(3/2)-2(1+3)^(1/2)+2(1+8)^(1/2)
=2/3*8-2/3*27-4+6
=16/3-18-4+6
=16/3-16
=-32/3
=∫(x+1-1)/根号(1+x)dx
=∫根号(x+1)dx-∫1/根号(1+x)dx
=2/3(x+1)^(3/2)-2(1+x)^(1/2)
=2/3(3+1)^(3/2)-2/3(8+1)^(3/2)-2(1+3)^(1/2)+2(1+8)^(1/2)
=2/3*8-2/3*27-4+6
=16/3-18-4+6
=16/3-16
=-32/3