(1)要使得ADQP为矩形:连接PQ 做Q垂直于AB点为M,当AP^2+PQ^2=AQ^2时ADQP为矩形,列出方程:AP=x,PQ=PM^2+MQ^2,AQ^2=AD^2+DQ^2,PM=I AB-AP-BM I=I 8-2x I,
可得:(8-2x)^2+6^2+x^2=(8-x)^2+36 x(x-4)=0,及x=4或x=0(舍去).
(2)DPQ为PD为腰的等腰三角形:PD=PQ,PD^2=AD^2+AP^2,PQ^2=PM^2+MQ^2,由(1)可得:x^2+36=(8-2x)^2+36 ,解的:(3x-8)(x-8)=0,及x=8/3或x=8(舍去).此时PDQB为平行四边形.
(3)7/4