解题思路:根据菱形的概念:有一组邻边相等的平行四边形是菱形判定.先证四边形ACEF为平行四边形,再证CE=AC即可.
证明:∵∠ACB=90°,DE是BC的中垂线,
∴DE⊥BC,
又∵AC⊥BC,
∴DE∥AC,
又∵D为BC中点,DF∥AC,
∴DE是△ABC的中位线,
∴E为AB边的中点,
∴CE=AE=BE,
∵∠BAC=60°,
∴△ACE为正三角形,
∵∠AEF=∠DEB=∠CAB=60°,
而AF=CE,又CE=AE,
∴AE=AF,
∴△AEF也为正三角形,
∴∠CAE=∠AEF=60°,
∴AC
∥
.EF,
∴四边形ACEF为平行四边形,
又∵CE=AC,
∴▭ACEF为菱形.
点评:
本题考点: 菱形的判定;线段垂直平分线的性质.
考点点评: 菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义;②四边相等;③对角线互相垂直平分.