(1)(tanπ/4-tanx)/(1+tanπ/4×tanx)=-1/3
tanπ/4=1,所以tanx=2
(2)原式=(sin²x+cos²x+2sinxcosx)/[4(cos²x+sinxcosx)]=(1+tan²x+2tanx)/[4(1+tanx)]
=3/4
(1)(tanπ/4-tanx)/(1+tanπ/4×tanx)=-1/3
tanπ/4=1,所以tanx=2
(2)原式=(sin²x+cos²x+2sinxcosx)/[4(cos²x+sinxcosx)]=(1+tan²x+2tanx)/[4(1+tanx)]
=3/4