(Ⅰ)证明:因为D,E分别为AP,AC的中点,所以DE//PC,
又因为DE
平面BCP,
所以DE//平面BCP。
(Ⅱ)证明:因为D,E,F,G分别为AP,AC,BC,PB的中点,
所以DE∥PC∥FG,DG∥AB∥EF,
所以四边形DEFG为平行四边形,
又因为PC⊥AB,所以DE⊥DG,
所以四边形DEFG为矩形。
(Ⅲ)存在点Q满足条件,理由如下:连接DF,EG,
设Q为EG的中点,由(Ⅱ)知,DF∩EG=Q,且QD=QE=QF=QG=
EG,
分别取PC,AB的中点M,N,连接ME,EN,NG,MG,MN。
与(Ⅱ)同理,可证四边形MENG为矩形,
其对角线点为EG的中点Q,且QM=QN=
EG,
所以Q为满足条件的点。