(1)f(n+1)-f(n)=S2n+1-Sn+1-(S2n-1-Sn)=(S2n+1-S2n-1)-(Sn+1-Sn)
=1/(2n+1)+1/2n-1/(n+1)=(2n^2+3n+1)/(2n+1)(2n)(n+1)>0
所以f(n+1)>f(n)
(2)由(1)知f(n)最小值为f(1)=1/3
logm(m-1)+logm-1m=lgm-lg(m-1)+lg(m-1)-lgm=0
[logm(m-1)]^2-11/20[logm-1m]^2=[logm(m-1)+logm-1m][logm(m-1)-logm-1m]+9/20[logm-1m]^2=9/20[logm-1m]^2