原题目应是tanα /2=tan^3( γ/2),2tanβ=tan γ吧?如果是的话下面是解.
根据题意
tanβ=(tanγ)/2=tan(γ/2)/[1-tan^2(γ/2)]
又
tan[(α+γ)/2]=[tan(α/2)+tan(γ/2)]/[1-tan(α/2)tan(γ/2)]
=[tan^3(γ/2)+tan(γ/2)]/[1-tan^4(γ/2)]
=tan(γ/2)[tan^2(γ/2)+1]/[tan^2(γ/2)+1][1-tan^2(γ/2)]
=tan(γ/2)/[1-tan^2(γ/2)]
=tanβ
由于α,β,γ均为锐角
所以(α+γ)/2=β
即α,β,γ为等差数列.