(1)an = a1 * q^(n-1);
a1 = 2
∵a2,a1+a3,a4成等差数列
∴a2 + a4 = 2(a1 + a3) (1)
而a2 = a1 * q=2q ,a4 = a1 * q³=2q³ ,a3 = a1 * q²=2q²
由(1)得:
2q + 2q³ =2 (2 + 2q²)
q + q³ =2 + 2q²
q³ - 2q² + q - 2 = 0
(q² + 1)(q - 2)=0
q-2=0
q=2;
an = 2 * 2^(n-1) = 2^n
(2)设Sn为数列{n/2^n}的前n项和,求Tn使用错位相减法.
Tn=1/2 2/2^2 ...(n-1)/2^(n-1) n/2^n (1)
1/2Tn=1/2^2 2/2^3 ...(n-1)/2^n n/2^(n 1) (2)
(1)-(2),得1/2Tn=1/2 1/2^2 1/2^3 ...1/2^n-n/2^(n 1)=1-2^n-n/2^(n 1)=1-(n 2)/2^(n 1)
所以Tn=2-(n 2)/2^n