(1)
过D作DM⊥AC于M,DN⊥BC于N,
由D是AB的中点,∴DM=DN.由CE=BF,MC=BN,∴EM=FN,∴△DME≌△DNF(S,A,S),∴DE=CF,①.由∠EDM=FDN,∠MDN=90°,∴∠EDF=90°②.由①,②得:△DEF是等腰直角三角形,∴△ABC∽△EFD.(2)AC=BC=√2·18=6,△DAE+△DBF=1/2·18=9,∴△CEF=9-5=4.∴CF·CE=8.∵CF=6-CE,(6-CE)·CE=8,CE²-6CE+8=0,(CE-2)(CE-4)=0,∴CE=2,CF=4,CE=4,CF=2.(3)由AB=1,AC=BC=√2/2,S△ABC=1/2·1²=1/2(或者1/2·(2√2)²=1/2)由AE=CF=x,∴CE=√2/2-x,S△DEF=y=1/2-1/2×1/2-1/2·x(√2/2-x)=1/4-x√2/4+x²/2.(0<x<√2/2).