解题思路:求出∠ADB=∠AEC,∠DBA=∠CAE,根据AAS证△ABD≌△CAE,推出BD=AE,AD=CE求出AE和AD即可.
∵BD⊥AE,CE⊥AE,∠BAC=90°,
∴∠ADB=∠AEC=∠BAC=90°,
∴∠ABD+∠BAD=90°,∠BAD+∠CAE=90°,
∴∠DBA=∠CAE,
在△ABD和△CAE中
∠ABD=∠CAE
∠BDA=∠AEC
AB=AC,
∴△ABD≌△CAE(AAS),
∴BD=AE,AD=CE,
∵CE=2,BD=6,
∴AE=6,AD=2,
∴DE=AE-AD=4,
故答案为:4.
点评:
本题考点: 全等三角形的判定与性质;等腰直角三角形.
考点点评: 本题考查了全等三角形的性质和判定,等腰直角三角形,关键是求出AE=BD,CE=AD.