存在,有一个P点,P点在BC中点,此时△BMP与△PMQ都是30°,60°,90°的三角形
下面我说明只有一个点
相似三角形对应角相等,故△MAP中有一个角=∠MPQ=60°,
因为△MBC是等边三角形
所以∠BMP60°
所以只能是∠MBP=60°,这个已确定
然后根据∠BPM=∠PMC+∠PCM,∠BPM>∠PMC
于是△BMP与△PMQ相似的对应边角都确定了下来
所以∠BMP=∠PMC,所以只有一个P点
存在,有一个P点,P点在BC中点,此时△BMP与△PMQ都是30°,60°,90°的三角形
下面我说明只有一个点
相似三角形对应角相等,故△MAP中有一个角=∠MPQ=60°,
因为△MBC是等边三角形
所以∠BMP60°
所以只能是∠MBP=60°,这个已确定
然后根据∠BPM=∠PMC+∠PCM,∠BPM>∠PMC
于是△BMP与△PMQ相似的对应边角都确定了下来
所以∠BMP=∠PMC,所以只有一个P点