∮(sinz dz)/z;|z|=1 求解复变积分
1个回答
∮(sinz dz)/z=∮(z-z^3/3!+z^5/5!+...) dz/z
=0
相关问题
求复变函数积分 ∮dz/(z-1)^n z=r (r1)
问一些复变函数求积分的题.1.C:0为中心,半径是1.求∮ z/((4z-π)(sinz)^2)dz
复变函数计算积分∮1/(z-i/2)*(z+1)dz,其中c为|z|=2
求这个积分怎么算?∮sinz/(z-1) dz C1:|z-1|=1,C2:|z+1|=1
如题,∮(sinz) / (z(z-1)^2) dz,|z|=4.
复变函数sinz=i,求z,
求∮[z^2+(1/z)]dz积分|z|=3
计算复变函数的积分 w=∫e^-z dz,积分号上面是i,下面是0
复变函数sinz/z的 洛朗级数怎么求
复变函数积分的一道题目求积分∫c:(Z的共轭)dz,其中c是从点z=-i到点z=i的直线段