y=2+(3x+3-3)/(x+1)^2=2+3/(x+1)-3/(x+1)^2,x不等于-1
y`=-3/(x+1)^2+6/(x+1)^3,令y`=0,解得x=1
y``=6/(x+1)^3-18/(x+1)^4,令y``=0,解得x=2
x(-∝,-1)-1(-1,1)1(1,2)2(2,+∝)
y`-+0+-
y``---0+
现在求渐近线
水平渐近线y=lim(x→+∝)2+3x/(x+1)^2=2
铅直渐近线x=lim(x→-1)2+3x/(x+1)^2 =-∝,
倾斜渐近线斜率k=lim(x→+∝)[2+3x/(x+1)^2]/x=0