设f(x)有二阶导数,且f''(X)>0,lim(x趋于0)f(x)/x=1 ..证明:当x>0时,有f(x)>x
1个回答
证明:lim(x趋于0)f(x)/x=1
∴f(0)=0,f'(0)=1(由洛必达法则知)
由麦克劳林公式知,
f(x)=f(0)+f'(x)x+1/2f''(m)x²(0x
相关问题
设f(x)具有二阶导数,且lim(x→0)f(x)/x=0,f"(0)=4,求lim(x→0)[1+f(x)/x]^(1
设函数f(x)有二阶连续导数,且(x->0)lim[f(x)-a]/[e^x^2-1]=0,(x->0)lim[f ‘’
设f(x)有二阶连续导数且f'(0)=0,lim(x趋向于0)f''(x)/|x|=1则
设f(x)在x=0处连续且lim(x趋于0)[f(x)+f(-x)]/x存在,证明f(0)=0
f(x)在x=a处有二阶导数,求证x趋于0时lim(((f(a+x)-f(a)/x}-f‘(a))/x=1/2f''(a
设f(0)的二阶导数存在,且f(0)=0,g(x)=f(x)/x (x≠0时) g(x)=f(0)的导数(x=0时),则
f(x)有定义,f(2x)=f(x)cos x,lim f(x)=f(0)=1(x趋于0时),求f(x)
设函数f(x)有二姐连续导数,且(x->0)lim[f(x)-a]/[e^x^2-1]=0,(x->0)lim[f ‘’
设f(x)有三阶导数,当x趋于x0时,f(x)是x-x0的二阶无穷小,问f(x)在x0处的泰勒展开式有何特点?
设f(x)在x=0处连续,且lim(x趋于0)f(x)/x存在,证明,f(x)在x=0处可导