1/1X2+1/2X3+1/3X4+...+1/99X100 怎么简便计算.过程..
2个回答
1/1X2+1/2X3+1/3X4+...+1/99X100
=(1-1/2)+(1/2-1/3)+(1/3-1/4)+...+(1/99-1/100)
=1-1/100
=99/100
相关问题
简便计算1/2+1/2x3+1/3x4+1/4x5+...+1/99x100
1/(1x2)+1/(2x3)+1/(3x4)+......+1/(99x100)=?要计算过程.
计算:1 1 1 1 1 ——+ ——+——+.+————+———— 1x2 2x3 3x4 99x100 100x10
1x1+0x1+2x2+1x2+3x3+2x3+4x4+3x4……99x99+98x99+100x100+99x100
计算(1+1.6)+(2+1.6x2)+(3+1.6x3)+.(99+1.6x99)+(100+1.6x100)
分式:计算1/(x-1)+1/(x-1)(x-2)+1/(x-2)(x-3)+...+1/(x-99)(x-100)
[1/1x2]+[1/2x3]+[1/3x4]+[1/4x5]+…+[1/99x100].
[1/1x2]+[1/2x3]+[1/3x4]+[1/4x5]+…+[1/99x100].
[1/1x2]+[1/2x3]+[1/3x4]+[1/4x5]+…+[1/99x100].
[1+1.2]+[2+1.2x2]+[3+1.2x3]+.+[99+1.2x99]+[100+1.2x100]=?