g(0)=f'(0)
按照定义 g'(0)=lim(x->0)[g(x)-g(0)]/[x-0]
=lim(x->0)[f(x)/x-f'(0)]/x
=lim(x->0)[f(x)-xf'(0)]/x²
当x趋向于0时 f(x)->f(0)=0
xf'(x)->0
x->0
所以运用罗比他法则
上下同时求导
g'(0)= lim(x→0) [f'(x)-f'(0)]/(2x)
因为此时当x趋向于0时 f'(x)-f'(0)->0
所以再一次罗比他法则
得 g'(0)= lim(x→0) [f'‘(x)]/2
=(1/2)f''(0)