解题思路:根据题意得出OC长为6可得一次函数中的n的值为6或-6,进而分类讨论得出抛物线对称轴以及开口方向,即可得出x的取值范围.
根据OC长为6可得一次函数中的n的值为6或-6.
分类讨论:①n=6时,y2=x+6,y=0时,易得A(-6,0)
∵抛物线经过点A、C,且与x轴交点A、B在原点的两侧,
∴抛物线开口向下,则a<0,
∵AB=16,且A(-6,0),
∴B(10,0),而A、B关于对称轴对称,
∴对称轴直线x=2,要使y1随着x的增大而减小,则a<0,故x>2;
②n=-6时,y2=x-6,y=0时,易得A(6,0),
∵抛物线过A、C两点,且与x轴交点A,B在原点两侧,
∴抛物线开口向上,则a>0,∵AB=16,且A(6,0),
∴B(-10,0),而A、B关于对称轴对称,
∴对称轴直线x=-2,要使y1随着x的增大而减小,且a>0,故x<-2.
点评:
本题考点: 抛物线与x轴的交点.
考点点评: 此题主要考查了抛物线与x轴交点以及二次函数的性质,利用分类讨论得出是解题关键.