已知抛物线y1=ax2+bx+c(a≠0)与x轴相交于点A、B(点A、B在原点O两侧),与y轴相交于点C,且点A、C在一

1个回答

  • 解题思路:根据题意得出OC长为6可得一次函数中的n的值为6或-6,进而分类讨论得出抛物线对称轴以及开口方向,即可得出x的取值范围.

    根据OC长为6可得一次函数中的n的值为6或-6.

    分类讨论:①n=6时,y2=x+6,y=0时,易得A(-6,0)

    ∵抛物线经过点A、C,且与x轴交点A、B在原点的两侧,

    ∴抛物线开口向下,则a<0,

    ∵AB=16,且A(-6,0),

    ∴B(10,0),而A、B关于对称轴对称,

    ∴对称轴直线x=2,要使y1随着x的增大而减小,则a<0,故x>2;

    ②n=-6时,y2=x-6,y=0时,易得A(6,0),

    ∵抛物线过A、C两点,且与x轴交点A,B在原点两侧,

    ∴抛物线开口向上,则a>0,∵AB=16,且A(6,0),

    ∴B(-10,0),而A、B关于对称轴对称,

    ∴对称轴直线x=-2,要使y1随着x的增大而减小,且a>0,故x<-2.

    点评:

    本题考点: 抛物线与x轴的交点.

    考点点评: 此题主要考查了抛物线与x轴交点以及二次函数的性质,利用分类讨论得出是解题关键.