要倒过来推:
∫dx/(x^2+1)=x/(x^2+1)-∫xd(1/(x^2+1))
=x/(x^2+1)+2∫x^2dx/(x^2+1)
=x/(x^2+1)+2∫(x^2+1-1)dx/(x^2+1)^2
=x/(x^2+1)+2∫dx/(x^2+1)-2∫dx/(x^2+1)^2
所以∫dx/(x^2+1)^2=x/(2(x^2+1))+1/2*∫dx/(x^2+1)
要倒过来推:
∫dx/(x^2+1)=x/(x^2+1)-∫xd(1/(x^2+1))
=x/(x^2+1)+2∫x^2dx/(x^2+1)
=x/(x^2+1)+2∫(x^2+1-1)dx/(x^2+1)^2
=x/(x^2+1)+2∫dx/(x^2+1)-2∫dx/(x^2+1)^2
所以∫dx/(x^2+1)^2=x/(2(x^2+1))+1/2*∫dx/(x^2+1)