解题思路:(1)根据等边三角形性质得出AB=AC,AP=AQ,∠BAC=∠B=∠PAQ=60°,求出∠BAP=∠CAQ,根据SAS证△ABP≌△ACQ,推出∠ACQ=∠B=60°=∠BAC,根据平行线的判定推出即可.
(2)根据等腰三角形性质求出∠BAP=30°,求出∠BAQ=90°,根据平行线性质得出∠AQC=90°,即可得出答案.
(1)证明:∵△ABC和△APQ是等边三角形,
∴AB=AC,AP=AQ,∠BAC=∠B=∠PAQ=60°,
∴∠BAP=∠CAQ=60°-∠PAC,
在△ABP和△ACQ中
AB=AC
∠BAP=∠CAQ
AP=AQ
∴△ABP≌△ACQ(SAS),
∴∠ACQ=∠B=60°=∠BAC,
∴AB∥CQ.
(2)AQ与CQ能互相垂直,此时点P在BC的中点,
证明:∵当P为BC边中点时,∠BAP=[1/2]∠BAC=30°,
∴∠BAQ=∠BAP+∠PAQ=30°+60°=90°,
又∵AB∥CQ,
∴∠AQC=90°,
即AQ⊥CQ.
点评:
本题考点: 全等三角形的判定与性质;等边三角形的性质.
考点点评: 本题考查了等边三角形性质,全等三角形的性质和判定,平行线性质和判定,等腰三角形性质的应用,主要考查学生的推理能力.