△=m²+6m-9-4m-4=m²+2m+5=(m+1)²+4>0
由韦达定理得:
x1+x2=-m-3
x1x2=m+1
∴(x1-x2)²=(x1+x2)²-4x1x2=(m+3)²-4(m+1)=m²+2m+5=(m+1)²+4
∵(x1-x2)²=8
∴(m+1)²=4
m+1=±2
m1=1 m2=-3
△=m²+6m-9-4m-4=m²+2m+5=(m+1)²+4>0
由韦达定理得:
x1+x2=-m-3
x1x2=m+1
∴(x1-x2)²=(x1+x2)²-4x1x2=(m+3)²-4(m+1)=m²+2m+5=(m+1)²+4
∵(x1-x2)²=8
∴(m+1)²=4
m+1=±2
m1=1 m2=-3