△ABC是等腰三角形
证明:∵在△ABC中,sinA=sin(π-B-C)=sin(B+C)=sinBcosC+sinCcosB
又∵2sinC·cosB=sinA
∴sinBcosC+sinCcosB=2sinC·cosB
∴sinBcosC-sinCcosB=sin(B-C)=0
∴B-C=0
∴B=C
∴△ABC是等腰三角形
△ABC是等腰三角形
证明:∵在△ABC中,sinA=sin(π-B-C)=sin(B+C)=sinBcosC+sinCcosB
又∵2sinC·cosB=sinA
∴sinBcosC+sinCcosB=2sinC·cosB
∴sinBcosC-sinCcosB=sin(B-C)=0
∴B-C=0
∴B=C
∴△ABC是等腰三角形