已知anbn都是等差数列,其中n项和分别为sntn,若sn/tn=n/2n+1

1个回答

  • a5/b5=[(a1+a9)/2]/[(b1+b9)/2] /分子分母同时运用等差中项性质

    =[(a1+a9)×9/2]/[(b1+b9)×9/2]

    =S9/T9

    =9/(2×9+1)

    =9/19

    第二问是an/bn吧.

    an/bn=[(a1+a(2n-1))/2]/[(b1+b(2n-1))/2]

    =[(a1+a(2n-1))(2n-1)/2]/[(b1+b(2n-1))(2n-1)/2]

    =S(2n-1)/T(2n-1)

    =(2n-1)/[2(2n-1)+1]

    =(2n-1)/(4n-1)

    如果是Sn/bn,那么:

    Sn/Tn=[na1+n(n-1)d1/2]/[nb1+n(n-1)d2/2]

    =[2a1+(n-1)d1]/[2b1+(n-1)d2]

    =[d1n+(2a1-d1)]/[d2n+(2b1-d2)]

    =n/(2n+1)

    令d1=t (t≠0),则2a1-d1=0 d2=2t 2b1-d2=t

    解得a1=t/2 b1=3t/2 d1=t d2=2t

    Sn/bn=[na1+n(n-1)d1/2]/[b1+(n-1)d2]

    =[n(t/2)+n(n-1)(t/2)]/[(3t/2)+(n-1)(2t)]

    =[n+n(n-1)]/[3 +4(n-1)]

    =n²/(4n-1)