解题思路:(I)根据导数的几何意义求出函数在x=0处的导数,得到切线的斜率等于0,建立等式关系,求出c的值,切点在函数f(x)图象上,求出d的值;
(II)先求函数f(x)的导函数f'(x),讨论b与0的大小,分别在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0,即可求出函数f(x)的单调区间.
(I)f'(x)=x2-2bx+c⇒f'(0)=0⇒c=0
而f(0)=2⇒d=0
(II)由f(x)=
1
3x3−bx2+2,f′(x)=x2−2bx
令f'(x)>0⇒x(x-2b)>0
故b>0,f'(x)>0⇒x>2b或x<0,
故函数f(x)的单调增区间(-∞,0)和(2b,+∞),单调减区间(0,2b)
当b>0,f'(x)>0⇒x>0或x<2b,
故函数f(x)的单调增区间(-∞,2b)和(0,+∞),单调减区间(2b,0)
当b=0,f'(x)=x2≥0,故函数f(x)的单调增区间(-∞,+∞)
综上所述:
当b>0时,故函数f(x)的单调增区间(-∞,0)和(2b,+∞),
故函数f(x)的单调减区间(0,2b)
当b>0,故函数f(x)的单调增区间(-∞,2b)和(0,+∞),
故函数f(x)的单调减区间(2b,0);
当b=0,函数f(x)的单调增区间(-∞,+∞)
点评:
本题考点: 利用导数研究曲线上某点切线方程;利用导数研究函数的单调性.
考点点评: 本题主要考查了利用导数研究曲线上某点切线方程,以及利用导数研究函数的单调性等基础题知识,考查运算求解能力,属于基础题.