如图,在平面直角坐标系中,O为坐标原点,抛物线y=0.5(x+2)²-2与x轴相交于点O,B两点,顶点为A,连接OA .求点A的坐标和∠AOB的度数
y=0.5x²+2x配方得:y=0.5(x+2)²-2
∴点A的坐标为A(-2,-2)
解方程0.5x²+2x=0得x=0或-4
∴B(-4,0),O(0,0)
由勾股定理得|OA|=2√2 |AB|=2√2
|OB|=4
∵OA²+AB²=OB²
∴△AOB是直角三角形(勾股定理得逆定理)
又∵OA=AB2√2
∴△AOB是等腰直角三角形
∴∠AOB=45º