已知tanx=2,求2sin2x-sinxcosx cos2x

2个回答

  • 分两部分求

    2sin2x=4sinxcosx 注:sin2x=2sinxcosx

    =4sinxcosx / {(cosx)^2+(sinx)^2} 注:{(cosx)^2+(sinx)^2=1

    =4tanx / {1+(tanx)^2} 注:分子分母同时除以(cosx)^2

    sinxcosx cos2x=1/2sin2xcos2x 注:sinxcosx=1/2sin2x

    =1/2sin2xcos2x / {(cos2x)^2+(sin2x)^2} 注:{(cos2x)^2+(sin2x)^2=1

    =1/2tan2x / {1+(tanx)^2} 注:分子分母同时除以(cos2x)^2

    tan=2 tan2x=(2tanx)/{1-(tanx)^2}=-(4/3) 数字代入计算一下就可以了

    2sin2x-sinxcosx cos2x=26/15