高一必修2直线方程61.求经过点A(0,0)和点B(2,0)且与直线L:x+y=4相切的圆的方程2.求圆心在直线x-y-

2个回答

  • 1.设圆的方程为(x-a)^2+(y-b)^2=r^2

    a^2+b^2=r^2

    (2-a)^2+b^2=r^2

    |a+b-4|/√ 2=r

    a=1或

    b=-7

    r=5√ 2

    a=1

    b=1

    r=√ 2

    圆的方程为(x-1)^2+(y-1)^2=2或(x-1)^2+(y+7)^2=50

    2

    圆系方程:

    经过两圆x^2+y^2+D1x+E1y+F1=0,

    x^2+y^2+D2x+E2y+F2=0的交点圆系方程为:

    x^2+y^2+D1x+E1y+F1+λ(x^2+y^2+D2x+E2y+F2)=0 (λ≠-1)

    解:

    x^2+y^2-4x-6+λ(x^2+y^2-4y-6)=0

    (1+λ)x^2-4x+(1+λ)y^2-4λy-6-6λ=0

    (x-(2/(1+λ)))^2+(y-(2λ/(1+λ)))^2-(4+4λ^2)/(1+λ)^2-6-6λ=0

    (2/(1+λ),2λ/(1+λ))在x-y-4=0上

    x-y-4=0=>λ=-1/3

    圆方程x^2-6x+y^2+2y-6=0