a'n+1' + [(-1)^n] an = 2n-1 (1)
a'n+2' + [(-1)^(n+1)] a'n+1' = 2(n+1) -1 =2n+1 (2)
式(1) * (-1)^n + 式(2), 注意到 (-1)^(n+1) = - (-1)^n , 有
an + a‘n+2’=[(-1)^n] (2n-1) + (2n+1)
n值和上式左边的关系如下:
1 a1+a3
2 a2+a4
5 a5+a7
6 a6+a8
9 a9+a11
10 a10+a12
现在看清楚了吧,呵呵
a'n+1' + [(-1)^n] an = 2n-1 (1)
a'n+2' + [(-1)^(n+1)] a'n+1' = 2(n+1) -1 =2n+1 (2)
式(1) * (-1)^n + 式(2), 注意到 (-1)^(n+1) = - (-1)^n , 有
an + a‘n+2’=[(-1)^n] (2n-1) + (2n+1)
n值和上式左边的关系如下:
1 a1+a3
2 a2+a4
5 a5+a7
6 a6+a8
9 a9+a11
10 a10+a12
现在看清楚了吧,呵呵