16x^2+4y^2-32xcosθ-16y(sinθ)^2-4(sin2θ)^2=
16(x^2-2xcosθ+cos^θ)+4(y^2-4y(sinθ)^2+(sinθ)^4)=4(sin2θ)^2+16cos^θ-4(sinθ)^4
16(x-cosθ)^2+4(y-2(sinθ)^2)=4(sin2θ)^2+16cos^θ-4(sinθ)^4
中心(x,y)
x=-cosθ
y=-2(sinθ)^2
-2(sinθ)^2=-1(1-x^2)=x^2-1
所以y=x^2-1
16x^2+4y^2-32xcosθ-16y(sinθ)^2-4(sin2θ)^2=
16(x^2-2xcosθ+cos^θ)+4(y^2-4y(sinθ)^2+(sinθ)^4)=4(sin2θ)^2+16cos^θ-4(sinθ)^4
16(x-cosθ)^2+4(y-2(sinθ)^2)=4(sin2θ)^2+16cos^θ-4(sinθ)^4
中心(x,y)
x=-cosθ
y=-2(sinθ)^2
-2(sinθ)^2=-1(1-x^2)=x^2-1
所以y=x^2-1