解题思路:设圆锥底面的半径为rcm,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式进行计算.
设圆锥底面的半径为rcm,
根据题意得2πr=[135•π•20/180],
解得r=15.
故答案为15厘米.
点评:
本题考点: 圆锥的计算.
考点点评: 本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.
解题思路:设圆锥底面的半径为rcm,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式进行计算.
设圆锥底面的半径为rcm,
根据题意得2πr=[135•π•20/180],
解得r=15.
故答案为15厘米.
点评:
本题考点: 圆锥的计算.
考点点评: 本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.