证:
由均值不等式得
a²+b²≥2ab,b²+c²≥2bc,c²+a²≥2ca
(a²+b²)+(b²+c²)+(c²+a²)≥2ab+2bc+2ca
2(a²+b²+c²)≥2(ab+bc+ca)
a²+b²+c²≥ab+bc+ca
a+b+c=1
(a+b+c)²
=a²+b²+c²+2ab+2bc+2ca
≥ab+bc+ca+2ab+2bc+2ca
=3(ab+bc+ca)
(a+b+c)²=1
3(ab+bc+ca)≤1
ab+bc+ca≤1/3
证:
由均值不等式得
a²+b²≥2ab,b²+c²≥2bc,c²+a²≥2ca
(a²+b²)+(b²+c²)+(c²+a²)≥2ab+2bc+2ca
2(a²+b²+c²)≥2(ab+bc+ca)
a²+b²+c²≥ab+bc+ca
a+b+c=1
(a+b+c)²
=a²+b²+c²+2ab+2bc+2ca
≥ab+bc+ca+2ab+2bc+2ca
=3(ab+bc+ca)
(a+b+c)²=1
3(ab+bc+ca)≤1
ab+bc+ca≤1/3