解题思路:(1)已知了抛物线的顶点坐标,可将抛物线的解析式设为顶点式,然后将函数图象经过的C点坐标代入上式中,即可求出抛物线的解析式;
(2)由于PD∥y轴,所以∠ADP≠90°,若△ADP是直角三角形,可考虑两种情况:
①以点P为直角顶点,此时AP⊥DP,此时P点位于x轴上(即与B点重合),由此可求出P点的坐标;
②以点A为直角顶点,易知OA=OC,则∠OAC=45°,所以OA平分∠CAP,那么此时D、P关于x轴对称,可求出直线AC的解析式,然后设D、P的横坐标,根据抛物线和直线AC的解析式表示出D、P的纵坐标,由于两点关于x轴对称,则纵坐标互为相反数,可据此求出P点的坐标;
(3)P、B重合,E点在x轴上,这样A、P、E三点在x轴上,所以A、P、E、F为顶点不可能构成平行四边形,所以只有(2)②的一种情况符合题意,由②知此时P、Q重合;假设存在符合条件的平行四边形,那么根据平行四边形的性质知:P、F的纵坐标互为相反数,可据此求出F点的纵坐标,代入抛物线的解析式中即可求出F点的坐标.
(1)∵抛物线的顶点为Q(2,-1),
∴设抛物线的解析式为y=a(x-2)2-1,
将C(0,3)代入上式,得:
3=a(0-2)2-1,a=1;
∴y=(x-2)2-1,即y=x2-4x+3;
(2)分两种情况:
①当点P1为直角顶点时,点P1与点B重合;
令y=0,得x2-4x+3=0,解得x1=1,x2=3;
∵点A在点B的右边,
∴B(1,0),A(3,0);
∴P1(1,0);
②当点A为△AP2D2的直角顶点时;
∵OA=OC,∠AOC=90°,
∴∠OAD2=45°;
当∠D2AP2=90°时,∠OAP2=45°,
∴AO平分∠D2AP2;
又∵P2D2∥y轴,
∴P2D2⊥AO,
∴P2、D2关于x轴对称;
设直线AC的函数关系式为y=kx+b(k≠0).
将A(3,0),C(0,3)代入上式得:
3k+b=0
b=3,
解得
k=-1
b=3;
∴y=-x+3;
设D2(x,-x+3),P2(x,x2-4x+3),
则有:(-x+3)+(x2-4x+3)=0,
即x2-5x+6=0;
解得x1=2,x2=3(舍去);
∴当x=2时,y=x2-4x+3=22-4×2+3=-1;
∴P2的坐标为P2(2,-1)(即为抛物线顶点).
∴P点坐标为P1(1,0),P2(2,-1);
(3)由(2)知,当P点的坐标为P1(1,0)时,不能构成平行四边形;
当点P的坐标为P2(2,-1)(即顶点Q)时,
平移直线AP交x轴于点E,交抛物线于F;
∵P(2,-1),
∴可设F(x,1);
∴x2-4x+3=1,
解得x1=2-
2,x2=2+
2;
∴符合条件的F点有两个,
即F1(2-
2,1),F2(2+
2,1).
点评:
本题考点: 二次函数综合题.
考点点评: 此题主要考查了二次函数解析式的确定、直角三角形的判定、平行四边形的判定和性质等重要知识点,同时还考查了分类讨论的数学思想,能力要求较高,难度较大.